Resiliency of Apache Trout habitats in a warmer and drier climate future
Corresponding Author
Daniel C. Dauwalter
Trout Unlimited, Boise, Idaho, USA
Correspondence
Daniel C. Dauwalter
Email: [email protected]
Search for more papers by this authorRosalinda Gonzalez
U.S. Fish and Wildlife Service, Phoenix, Arizona, USA
Search for more papers by this authorTim Gatewood
White Mountain Apache Tribe, Whiteriver, Arizona, USA
Search for more papers by this authorZachary S. Beard
Arizona Game and Fish Department, Phoenix, Arizona, USA
Search for more papers by this authorZachary Jackson
U.S. Fish and Wildlife Service, Whiteriver, Arizona, USA
Search for more papers by this authorCorresponding Author
Daniel C. Dauwalter
Trout Unlimited, Boise, Idaho, USA
Correspondence
Daniel C. Dauwalter
Email: [email protected]
Search for more papers by this authorRosalinda Gonzalez
U.S. Fish and Wildlife Service, Phoenix, Arizona, USA
Search for more papers by this authorTim Gatewood
White Mountain Apache Tribe, Whiteriver, Arizona, USA
Search for more papers by this authorZachary S. Beard
Arizona Game and Fish Department, Phoenix, Arizona, USA
Search for more papers by this authorZachary Jackson
U.S. Fish and Wildlife Service, Whiteriver, Arizona, USA
Search for more papers by this authorAbstract
Objective
The Southwest has the hottest and driest climate in the United States, and projections show that it will only get hotter and drier into the 2100s. The Apache Trout Oncorhynchus apache is native to the Southwest and is currently listed as threatened under the U.S. Endangered Species Act. Our goals were to understand how climate factors influence the distribution of juvenile Apache Trout (<125 mm TL) and how climate change will influence the suitability of Apache Trout habitat into the 2080s.
Methods
We used a species distribution model to evaluate how climatic and other factors influence the distribution of juvenile Apache Trout. We used predictions from the model to evaluate how climate change might impact the suitability of streams designated for recovery of the species into the 2080s.
Result
Juvenile Apache Trout occurrence was predicted well by mean July stream temperature (°C), mean annual precipitation (dm), stream slope (%), and the presence of nonnative trout (area under the receiver operating characteristic curve = 0.85). Standardized parameter estimates showed that Rainbow Trout O. mykiss presence and annual precipitation influenced occupancy the most. Model predictions for the 2080s showed suitable habitat (occurrence probability ≥ 0.25) to increase for 11 (of 45) Apache Trout streams in the increased temperature (+3°C) only scenario (scenario 1), as headwater reaches that are currently too cold warmed to become more suitable. When we also included projected declines in annual precipitation (−5%) for the 2080s (scenario 2), the amount of suitable habitat decreased for eight Apache Trout streams and remained unchanged in all other streams.
Conclusion
Most Apache Trout populations are isolated upstream of barriers to nonnative trout in stream reaches that are currently thermally suitable with respect to mean July temperatures and would remain suitable into the 2080s. Cold headwater reaches are projected to warm, becoming more suitable in the 2080s. Thus, intentional isolation and the resultant truncated downstream distributions of Apache Trout populations in headwater streams explain the nominal effect of projected temperature increases due to climate change on this cold-adapted salmonid. Standardized model parameters suggest that future declines in precipitation, manifested through reduced snowpack and its influence on streamflows, will play a larger role than temperature in the suitability—and, thus, resiliency—of Apache Trout habitats at least into the 2080s.
Abstract
Impact statement
Apache Trout will be more affected by declining precipitation than warming stream temperatures as the Arizona climate changes into the 2080s.This is because populations are isolated from nonnative trout above natural and manmade barriers in habitats that will remain thermally suitable into the 2080s.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Fish survey data are available by request to the White Mountain Apache Tribe, USFWS, or Arizona Game and Fish Department. Temperature data in Appendix are available from the Apache–Sitgreaves National Forests. NorWeST stream temperature data are available at https://www.fs.usda.gov/rm/boise/AWAE/projects/NorWeST.html.
REFERENCES
- Angel, J., Swanston, C., Baustead, B. M., Conlon, K. C., Hall, K. R., Jorns, J. L., Kunkel, K. E., Lemos, M. C., Lofgren, B., Ontl, T. A., Posey, J., Stone, K., Takle, E., & Todey, D. (2018). Midwest. In D. R. Reidmiller, C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, & B. C. Stewart (Eds.), Impacts, risks, and adaptation in the United States: Fourth national climate assessment, Vol. II (pp. 872–940). U.S. Global Change Research Program. https://nca2018.globalchange.gov/chapter/21/
- Avenetti, L. D., Robinson, A. T., & Cantrell, C. J. (2006). Short-term effectiveness of constructed barriers at protecting Apache Trout. North American Journal of Fisheries Management, 26(1), 213–216. https://doi.org/10.1577/M04-092.1
- Baker, J. P., & Bonar, S. A. (2019). Using a mechanistic model to develop management strategies to cool Apache Trout streams under the threat of climate change. North American Journal of Fisheries Management, 39(5), 849–867. https://doi.org/10.1002/nafm.10337
- Barnett, T. P., Pierce, D. W., Hidalgo, H. G., Bonfils, C., Santer, B. D., Das, T., Bala, G., Wood, A. W., Nozawa, T., Mirin, A. A., Cayan, D. R., & Dettinger, M. D. (2008). Human-induced changes in the hydrology of the western United States. Science, 319(5866), 1080–1083. https://doi.org/10.1126/science.1152538
- Becker, C. D., & Genoway, R. G. (1979). Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environmental Biology of Fishes, 4, 245–256. https://doi.org/10.1007/BF00005481
- Beitinger, T. L., Bennett, W. A., & McCauley, R. W. (2000). Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes, 58, 237–275. https://doi.org/10.1023/A:1007676325825
- Benke, A. C., & Huryn, A. D. (2010). Benthic invertebrate production—facilitating answers to ecological riddles in freshwater ecosystems. Journal of the North American Benthological Society, 29(1), 264–285. https://doi.org/10.1899/08-075.1
10.1899/08?075.1 Google Scholar
- Bonar, S. A., & Petre, S. J. (2015). Ground-based thermal imaging of stream surface temperatures: Technique and evaluation. North American Journal of Fisheries Management, 35(6), 1209–1218. https://doi.org/10.1080/02755947.2015.1091410
- Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information – theoretic approach ( 2nd ed.). Springer-Verlag.
- Carlson, A., & Culver, M. (2009). Detection of hybridization in Apache Trout in Arizona through incorporation of both sequence and microsatellite data (Unpublished agency data). Arizona Game and Fish Department.
- Carmichael, G. J., Hanson, J. N., Novy, J. R., Meyer, K. J., & Marizot, D. C. (1995). Apache Trout management: Cultured fish, genetics, habitat improvements, and regulations. In H. L. Schramm & R. G. Piper (Eds.), Uses and effects of cultured fishes in aquatic ecosystems (Symposium 15, pp. 112–121). American Fisheries Society.
- Carmichael, G. J., Hanson, J. N., Schmidt, M. E., & Morizot, D. C. (1993). Introgression among Apache, Cutthroat, and Rainbow trout in Arizona. Transactions of the American Fisheries Society, 122(1), 121–130. https://doi.org/10.1577/1548-8659(1993)122%3C0121:IAACAR%3E2.3.CO;2
- Clarkson, R. W., & Wilson, J. R. (1995). Trout biomass and stream habitat relationships in the White Mountains area, east-Central Arizona. Transactions of the American Fisheries Society, 124(4), 599–612. https://doi.org/10.1577/1548-8659(1995)124%3C0599:TBASHR%3E2.3.CO;2
- Coleman, M. A., & Fausch, K. D. (2007). Cold summer temperature limits recruitment of age-0 Cutthroat Trout in high-elevation Colorado streams. Transactions of the American Fisheries Society, 136(5), 1231–1244. https://doi.org/10.1577/T05-244.1
- Conroy, M. J., & Peterson, J. T. (2013). Decision making in natural resource management. John Wiley and Sons.
10.1002/9781118506196 Google Scholar
- Crausbay, S. D., Betancourt, J., Bradford, J., Cartwright, J., Dennison, W. C., Dunham, J., Enquist, C. A. F., Frazier, A. G., Hall, K. R., Littell, J. S., Luce, C. H., Palmer, R., Ramirez, A. R., Rangwala, I., Thompson, L., Walsh, B. M., & Carter, S. (2020). Unfamiliar territory: Emerging themes for ecological drought research and management. One Earth, 3(3), 337–353. https://doi.org/10.1016/j.oneear.2020.08.019
10.1016/j.oneear.2020.08.019 Google Scholar
- Cunjak, R. A., Curry, A., & Power, G. (1987). Seasonal energy budget of Brook Trout in streams: Implications of a possible deficit in early winter. Transactions of the American Fisheries Society, 116(6), 817–828. https://doi.org/10.1577/1548-8659(1987)116%3C817:SEBOBT%3E2.0.CO;2
- Cunjak, R. A., & Power, G. (1987). The feeding and energetics of stream-resident trout in winter. Journal of Fish Biology, 31(4), 493–511. https://doi.org/10.1111/j.1095-8649.1987.tb05254.x
- Dauwalter, D., Giordano, B., Jackson, Z., Johnson, J., Lopez, M., & Stephens, T. (2017a). Apache Trout monitoring plan: A monitoring plan for small and isolated trout populations. Trout Unlimited. https://www.tu.org/wp-content/uploads/2019/02/Apache-Trout-Monitoring-Plan-FINAL-20171211.pdf
- Dauwalter, D. C., Gatewood, T., Jackson, Z. J., Barney, J., & Beard, Z. S. (2022). Digital hydrography underestimates stream length and leads to underestimates of trout population size. North American Journal of Fisheries Management, 42(4), 994–1002. https://doi.org/10.1002/nafm.10793
- Dauwalter, D. C., & Rahel, F. J. (2008). Distribution modelin‑g to guide stream fish conservation: An example using the Mountain Sucker in the Black Hills National Forest, USA. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(7), 1263–1276. https://doi.org/10.1002/aqc.940
- Dauwalter, D. C., Williams, J. E., McGurrin, J., Brooks, J. E., & Propst, D. L. (2017b). Vulnerability of Gila Trout streams to future wildfires and temperature warming. In R. F. Carline (Ed.), Proceedings of the wild trout symposium XII—Science, politics, and wild trout management: Who's driving and where are we going? (pp. 195–205). Wild Trout Symposium XII, West Yellowstone, Montana.
- Delbecq, A. L., van de Ven, A. H., & Gustafson, D. H. (1975). Group techniques for program planning: A guide to nominal group and Delphi processes. Scott Foresman and Company.
- Dolloff, C. A., Hankin, D. G., & Reeves, G. H. (1993). Basinwide estimation of habitat and fish populations in streams (General Technical Report SE-83). U.S. Department of Agriculture, Forest Service, Southern Forest Experimentation Station. https://doi.org/10.2737/SE-GTR-83
10.2737/SE-GTR-83 Google Scholar
- Dunham, J. B., Rosenberger, A. E., Thurow, R. F., Dolloff, C. A., & Howell, P. J. (2009). Coldwater fish in wadeable streams. In S. A. Bonar, W. A. Hubert, & D. W. Willis (Eds.), Standard methods for sampling North American freshwater fishes (pp. 119–138). American Fisheries Society.
10.47886/9781934874103.ch8 Google Scholar
- Easterling, D. R., Kunkel, K. E., Arnold, J. R., Knutson, T., LeGrande, A. N., Leung, L. R., Vose, R. S., Waliser, D. E., & Wehner, M. F. (2017). Precipitation change in the United States. In D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, & T. K. Maycock (Eds.), Climate science special report: Fourth national climate assessment, Vol. II (pp. 207–230). U.S. Global Research Program. https://science2017.globalchange.gov/chapter/7/
- Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
- Fausch, K. D., Rieman, B. E., Dunham, J. B., Young, M. K., & Peterson, D. P. (2009). Invasion versus isolation: Trade-offs in managing native salmonids with barriers to upstream movement. Conservation Biology, 23, 859–870.
- Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
- Gendaszek, A. S., Dunham, J. B., Torgersen, C. E., Hockman-Wert, D. P., Heck, M. P., Thorson, J., Mintz, J., & Allai, T. (2020). Land-cover and climatic controls on water temperature, flow permanence, and fragmentation of Great Basin stream networks. Water, 12, 1962.
- Gonzales, P., Garfin, G. M., Breshears, D. D., Brooks, K. M., Brown, H. E., Elias, E. H., Gunasekara, A., Huntly, N., Maldonado, J. K., Mantua, N. J., Margolis, H. G., McAfee, S., Middleton, B. R., & Udall, B. H. (2018). Southwest. In D. R. Reidmiller, C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, & B. C. Stewart (Eds.), Impacts, risks, and adaptation in the United States: Fourth National Climate Assessment, Vol. II (pp. 1101–1184). U.S. Global Research Program. https://nca2018.globalchange.gov/chapter/25/
- Gresswell, R. E. (1999). Fire and aquatic ecosystems in forested biomes of North America. Transactions of the American Fisheries Society, 128, 193–221.
- Hamlet, A. F., Elsner, M. M., Mauger, G. S., Lee, S.-Y., Tohver, I., & Norheim, R. A. (2013). An overview of the Columbia Basin climate change scenarios project: Approach, methods, and summary of key results. Atmosphere–Ocean, 51, 392–415.
- Harper, K. C. (1976). On the biology of Salmo apache and its management implications [Master's thesis, University of Arizona, Tucson]. https://repository.arizona.edu/handle/10150/566616
- Harper, K. C. (1978). Biology of a southwestern salmonid, Salmo apache (Miller 1972). In J. R. Moring (Ed.), Proceedings of the wild trout—Catchable trout symposium (pp. 99–111). Oregon Department of Fish and Wildlife, Research and Development Section.
- Hemstrom, W., Dauwalter, D., Peacock, M. M., Leasure, D., Wenger, S., Miller, M. R., & Neville, H. (2022). Population genomic monitoring provides insight into conservation status but no correlation with demographic estimates of extinction risk in a threatened trout. Evolutionary Applications, 15(9), 1449–1468. https://doi.org/10.1111/eva.13473
- Hilderbrand, R. H., & Kershner, J. L. (2000). Conserving inland Cutthroat Trout in small streams: How much stream is enough? North American Journal of Fisheries Management, 20(2), 513–520. https://doi.org/10.1577/1548-8675(2000)020%3C0513:CICTIS%3E2.3.CO;2
10.1577/1548?8675(2000)020<0513:CICTIS>2.3.CO;2 Google Scholar
- Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression ( 2nd ed.). John Wiley & Sons, Inc.
10.1002/0471722146 Google Scholar
- Huntington, J. L., & Niswonger, R. G. (2012). Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: An integrated modeling approach. Water Resources Research, 48, W11524. https://doi.org/10.1029/2012WR012319
- Isaak, D. J., Wenger, S. J., Peterson, E. E., Ver Hoef, J. M., Nagel, D. E., Luce, C. H., Hostetler, S. W., Dunham, J. B., Roper, B. B., Wollrab, S. P., Chandler, G. L., Horan, D. L., & Parkes-Payne, S. (2017a). The NorWeST summer stream temperature model and scenarios for the western U.S.: A crowd-sourced database and new geospatial tools foster a user-community and predict broad climate warming of rivers and streams. Water Resources Research, 53(11), 9181–9205. https://doi.org/10.1002/2017WR020969
- Isaak, D. J., Wenger, S. J., & Young, M. K. (2017b). Big biology meets microclimatology: Defining thermal niches of ectotherms at landscape scales for conservation planning. Ecological Applications, 27(3), 977–990. https://doi.org/10.1002/eap.1501
- Isaak, D. J., Young, M. K., Nagel, D. E., Horan, D. L., & Groce, M. C. (2015). The cold-water climate shield: Delineating refugia for preserving salmonid fishes through the 21st century. Global Change Biology, 21(7), 2540–2553. https://doi.org/10.1111/gcb.12879
- Jones, S. M., & Gutzler, D. S. (2016). Spatial and seasonal variations in aridification across Southwest North America. Journal of Climate, 29(12), 4637–4649. https://doi.org/10.1175/JCLI-D-14-00852.1
- Keeley, J. E., van Mantgem, P., & Falk, D. A. (2019). Fire, climate and changing forests. Nature Plants, 5, 774–775. https://doi.org/10.1038/s41477-019-0485-x
- Kennedy, T. L., Gutzler, D. S., & Leung, R. L. (2009). Predicting future threats to the long-term survival of Gila Trout using a high-resolution simulation of climate change. Climatic Change, 94, 503–515. https://doi.org/10.1007/s10584-008-9503-0
- Kovach, R., Jonsson, B., Jonsson, N., Arismendi, I., Williams, J. E., Kershner, J. L., Al-Chokhachy, R., Letcher, B., & Muhlfeld, C. C. (2019). Climate change and the future of trout and char. In J. L. Kershner, J. E. Williams, R. Gresswell, & J. Lóbon-Cerviá (Eds.), Trout and char of the world (pp. 685–716). American Fisheries Society.
- Long, J. W., Medina, A. L., & Tecle, A. (2006). Geologic influences on Apache Trout habitat in the White Mountains of Arizona. Journal of the Arizona-Nevada Academy of Science, 38(2), 88–101.
10.2181/1533-6085(2006)38[88:GIOATH]2.0.CO;2 Google Scholar
- McKay, L., T. Bondelid, T. Dewald, J. Johnston, R. Moore, & A. Rea. (2012). NHDPlus version 2: User guide. Prepared for U.S. Environmental Protection Agency, Office of Water. https://nctc.fws.gov/courses/references/tutorials/geospatial/CSP7306/Readings/NHDPlusV2_User_Guide.pdf
- Meyer, K. A., & Griffith, J. S. (1997). First-winter survival of Rainbow Trout and Brook Trout in the Henrys Fork of the Snake River, Idaho. Canadian Journal of Zoology, 75, 59–63. https://doi.org/10.1139/z97-007
- Mock, C. J. (1996). Climate controls and spatial variations of precipitation in the western United States. Journal of Climate, 9(5), 1111–1125. https://doi.org/10.1175/1520-0442(1996)009%3C1111:CCASVO%3E2.0.CO;2
- Muhlfeld, C. C., Dauwalter, D. C., D'Angelo, V. S., Ferguson, A., Giersch, J. J., Impson, D., Kiozumi, I., Kovach, R., McGinnity, P., Schoeffmann, J., Vollestad, L. A., & Epifanio, J. (2019). Global status of freshwater trout and char: Conservation challenges in the 21st century. In J. L. Kershner, J. E. Williams, R. E. Gresswell, & J. Lóbon-Cerviá (Eds.), Trout and char of the world (pp. 717–760). American Fisheries Society.
- Myers, B. J. E., Lynch, A. J., Bunnell, D. B., Chu, C., Falke, J. A., Kovach, R. P., Krabbenhoft, T. J., Kwak, T. J., & Paukert, C. P. (2017). Global synthesis of the documented and projected effects of climate change on inland fishes. Reviews in Fish Biology and Fisheries, 27, 339–361. https://doi.org/10.1007/s11160-017-9476-z
- Nagel, D., Peterson, E., Isaak, D., Ver Hoef, J., & Horan, D. (2015). National stream internet protocol and user guide (U.S. Forest Service Technical Report). U.S. Forest Service, Rocky Mountain Research Station. https://www.fs.usda.gov/research/rmrs/understory/national-stream-internet-protocol-and-user-guide
- Neville, H., Dauwalter, D., & Peacock, M. (2016). Monitoring demographic and genetic responses of a threatened inland trout to habitat reconnection. Transactions of the American Fisheries Society, 145(3), 610–626. https://doi.org/10.1080/00028487.2015.1131747
- Overpeck, J. T., & Bonar, S. A. (2021). Southwestern fish and aquatic systems: The climate challenge. In D. L. Propst, J. E. Williams, K. R. Bestgen, & C. W. Hoagstrom (Eds.), Standing between life and extinction (pp. 137–152). University of Chicago Press.
10.7208/chicago/9780226694504.003.0009 Google Scholar
- Parks, S. A., & Abatzoglou, J. T. (2020). Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017. Geophysical Research Letters, 47(22), e2020GL089858. https://doi.org/10.1029/2020GL089858
- Peterson, D. P., Rieman, B. E., Horan, D. L., & Young, M. K. (2014). Patch size but not short-term isolation influences occurrence of Westslope Cutthroat Trout above human-made barriers. Ecology of Freshwater Fish, 23(4), 556–571. https://doi.org/10.1111/eff.12108
- Petre, S. J., & Bonar, S. A. (2017). Determination of habitat requirements for Apache Trout. Transactions of the American Fisheries Society, 146(1), 1–15. https://doi.org/10.1080/00028487.2016.1225597
- Potter, K. W. (1991). Hydrological impacts of changing land management practices in a moderate-sized agricultural catchment. Water Resources Research, 27(5), 845–855. https://doi.org/10.1029/91WR00076
- R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. www.R-project.org/
- Recsetar, M. S. (2011). Thermal tolerance of Apache Trout at various life stages [Master's thesis, University of Arizona, Tucson].
- Recsetar, M. S., & Bonar, S. A. (2013). Survival of Apache Trout eggs and alevins under static and fluctuating temperature regimes. Transactions of the American Fisheries Society, 142(2), 373–379. https://doi.org/10.1080/00028487.2012.741551
- Recsetar, M. S., Bonar, S. A., & Feuerbacher, O. G. (2014). Growth and survival of Apache Trout under static and fluctuating temperature regimes. Transactions of the American Fisheries Society, 143(5), 1247–1254. https://doi.org/10.1080/00028487.2014.931298
- Rinne, J. N., & Minckley, W. L. (1985). Patterns of variation and distribution in Apache Trout (Salmo apache) relative to co-occurrence with introduced salmonids. Copeia, 1985, 285–292. https://doi.org/10.2307/1444838
- Rinne, J. N., Minckley, W. L., & Hanson, J. N. (1981). Chemical treatment of Ord Creek, Apache County, Arizona, to re-establish Arizona trout. Journal of the Arizona-Nevada Academy of Science, 16(3), 74–78.
- Robinson, A. T., Avenetti, L. D., & Cantrell, C. (2004). Evaluation of Apache Trout protection actions (Technical Guidance Bulletin No. 7). Arizona Game and Fish Department.
- Schultz, L. D., Heck, M. P., Hockman-Wert, D., Allai, T., Wenger, S., Cook, N. A., & Dunham, J. B. (2017). Spatial and temporal variability in the effects of wildfire and drought on thermal habitat for a desert trout. Journal of Arid Environments, 145, 60–68. https://doi.org/10.1016/j.jaridenv.2017.05.008
- Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Huang, H.-P., Harnik, N., Leetmaa, A., Lau, N.-C., Li, C., Velez, J., & Naik, N. (2007). Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316(5828), 1181–1184. https://doi.org/10.1126/science.1139601
- Shuter, B. J., & Post, J. R. (1990). Climate, population viability, and the zoogeography of temperate fishes. Transactions of the American Fisheries Society, 119(2), 314–336. https://doi.org/10.1577/1548-8659(1990)119%3C0314:CPVATZ%3E2.3.CO;2
- Thurman, L. L., Stein, B. A., Beever, E. A., Foden, W., Geange, S. R., Green, N., Gross, J. E., Lawrence, D. J., LeDee, O., Olden, J. D., Thompson, L. M., & Young, B. E. (2020). Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Frontiers in Ecology and the Environment, 18(9), 520–528. https://doi.org/10.1002/fee.2253
- Torgersen, C. E., Ebersole, J. L., & Keenan, D. M. (2012). Primer for identifying cold-water refuges to protect and restore thermal diversity in riverine landscapes (EPA 910-C-12-001). U.S. Environmental Protection Agency.
- Udall, B., & Overpeck, J. (2017). The twenty-first century Colorado River hot drought and implications for the future. Water Resources Research, 53(3), 2404–2418. https://doi.org/10.1002/2016WR019638
- Ulaski, M. E., Manuell, K. M., Jackson, Z. J., & Quist, M. C. (2020). Precision of structures used to estimate age and growth of Apache Trout Oncorhynchus apache in the White Mountains of Arizona (Unpublished Report). Idaho Cooperative Fish and Wildlife Research Unit.
- U.S. Fish and Wildlife Service. (2009). Apache Trout (Oncorhynchus apache) recovery plan (FWS-R2-ES-2009-N138 20124-1113-0000-C2). U.S. Fish and Wildlife Service.
- U.S. Fish and Wildlife Service. (2022). Species status assessment for the Apache Trout Oncorhynchus apache. U.S. Fish and Wildlife Service.
- U.S. Global Change Research Program. (2017). Climate science special report: Fourth national climate assessment, Vol. I. D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, & T. K. Maycock (Eds.). U.S. Global Change Research Program. https://science2017.globalchange.gov/
- Vose, R. S., Easterling, D. R., Kunkel, K. E., LeGrande, A. N., & Wehner, M. F. (2017). Temperature changes in the United States. In D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, & T. K. Maycock (Eds.), Climate science special report: Fourth national climate assessment, Vol. I (pp. 185–206). U.S. Global Change Research Program. https://science2017.globalchange.gov/chapter/6/
- Wares, J. P., Alo, D., & Turner, T. F. (2004). A genetic perspective on management and recovery of federally endangered trout (Oncorhynchus gilae) in the American southwest. Canadian Journal of Fisheries and Aquatic Sciences, 61(10), 1890–1899. https://doi.org/10.1139/f04-124
- Weise, E. M., Sard, N. M., Nehfer, A., & Scribner, K. T. (2020). Adaptive genetic management: Assessing the benefits of translocations. Conservation Genetics, 21, 277–287. https://doi.org/10.1007/s10592-020-01249-7
- Wenger, S. J., Isaak, D. J., Dunham, J. B., Fausch, K. D., Luce, C. H., Neville, H. M., Rieman, B. E., Young, M. K., Nagel, D. E., Horan, D. L., & Chandler, G. L. (2011a). Role of climate and invasive species in structuring trout distributions in the interior Columbia River basin, USA. Canadian Journal of Fisheries and Aquatic Sciences, 68(6), 988–1008. https://doi.org/10.1139/f2011-034
- Wenger, S. J., Isaak, D. J., Luce, C. H., Neville, H. M., Fausch, K. D., Dunham, J. B., Dauwalter, D. C., Young, M. K., Elsner, M. M., Rieman, B. E., Hamlet, A. F., & Williams, J. E. (2011b). Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences, 108(34), 14175–14180. https://doi.org/10.1073/pnas.1103097108
- Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C., & Tallmon, D. A. (2015). Genetic rescue to the rescue. Trends in Ecology & Evolution, 30(1), 42–49. https://doi.org/10.1016/j.tree.2014.10.009
- Williams, A. P., Cook, E. R., Smerdon, J. E., Cook, B. I., Abatzoglou, J. T., Bolles, K., Baek, S. H., Badger, A. M., & Livneh, B. (2020). Large contribution from anthropogenic warming to an emerging North American megadrought. Science, 368(6488), 314–318. https://doi.org/10.1126/science.aaz9600
- Williams, J. E., & Carter, J. M. (2009). Managing native trout past peak water. Southwest Hydrology, 8(26–27), 34.
- Williams, J. E., Haak, A. L., Neville, H. M., & Colyer, W. T. (2009). Potential consequences of climate change to persistence of Cutthroat Trout populations. North American Journal of Fisheries Management, 29(3), 533–548. https://doi.org/10.1577/M08-072.1
- Williams, J. E., Neville, H. M., Haak, A. L., Colyer, W. T., Wenger, S. J., & Bradshaw, S. (2015). Climate change adaptation and restoration of western trout streams: Opportunities and strategies. Fisheries, 40(7), 304–317. https://doi.org/10.1080/03632415.2015.1049692
- Zeigler, M. P., Rogers, K. B., Roberts, J. J., Todd, A. S., & Fausch, K. D. (2019). Predicting persistence of Rio Grande Cutthroat Trout populations in an uncertain future. North American Journal of Fisheries Management, 39(5), 819–848. https://doi.org/10.1002/nafm.10320